Accuracy and limitations of second-order many-body perturbation theory for predicting vertical detachment energies of solvated-electron clusters.

نویسندگان

  • John M Herbert
  • Martin Head-Gordon
چکیده

Vertical electron detachment energies (VDEs) are calculated for a variety of (H(2)O)(n)(-) and (HF)(n)(-) isomers, using different electronic structure methodologies but focusing in particular on a comparison between second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster theory with noniterative triples, CCSD(T). For the surface-bound electrons that characterize small (H(2)O)(n)(-) clusters (n< or = 7), the correlation energy associated with the unpaired electron grows linearly as a function of the VDE but is unrelated to the number of monomers, n. In every example considered here, including strongly-bound "cavity" isomers of (H(2)O)(24)(-), the correlation energy associated with the unpaired electron is significantly smaller than that associated with typical valence electrons. As a result, the error in the MP2 detachment energy, as a fraction of the CCSD(T) value, approaches a limit of about -7% for (H(2)O)(n)(-) clusters with VDEs larger than about 0.4 eV. CCSD(T) detachment energies are bounded from below by MP2 values and from above by VDEs calculated using second-order many-body perturbation theory with molecular orbitals obtained from density functional theory. For a variety of both strongly- and weakly-bound isomers of (H(2)O)(20)(-) and (H(2)O)(24)(-), including both surface states and cavity states, these bounds afford typical error bars of +/-0.1 eV. We have found only one case where the Hartree-Fock and density functional orbitals differ qualitatively; in this case the aforementioned bounds lie 0.4 eV apart, and second-order perturbation theory may not be reliable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvation of the Azide Anion (N3) in Water Clusters and Aqueous Interfaces: A Combined Investigation by Photoelectron Spectroscopy, Density Functional Calculations, and Molecular Dynamics Simulations†

We report a photoelectron spectroscopy and computational study of hydrated N3 anion clusters, N3(H2O)n (n ) 0-16), in the gas phase. Photoelectron spectra of the solvated azide anions were observed to consist of a single peak, similar to that of the bare N3, but the spectral width was observed to broaden as a function of cluster size due to solvent relaxation upon electron detachment. The adiab...

متن کامل

Solvated electrons in very small clusters of polar molecules: (HF)(3)(-).

Photoelectron spectra of (HF)(3)(-) reveal coexistence of two anionic isomers with vertical electron detachment energies (VDE) of 0.24 and 0.43 eV. The results of electronic-structure calculations, performed at the coupled cluster level of theory with single, double, and noniterative triple excitations, suggest that the two isomers observed experimentally are an open, zigzag, dipole-bound anion...

متن کامل

Photoinduced electron transfer and solvation in iodide-doped acetonitrile clusters.

We have used ultrafast time-resolved photoelectron imaging to measure charge transfer dynamics in iodide-doped acetonitrile clusters I(-)(CH(3)CN)(n) with n = 5-10. Strong modulations of vertical detachment energies were observed following charge transfer from the halide, allowing interpretation of the ongoing dynamics. We observe a sharp drop in the vertical detachment energy (VDE) within 300-...

متن کامل

Photoelectron imaging of tetrahydrofuran cluster anions

Anionic tetrahydrofuran clusters THF n − 1 n 100 are studied with photoelectron imaging as gas-phase precursors for electrons solvated in THF. Photoelectron spectra of clusters up to n=5 show two peaks, one of which is attributed to a solvated open chain radical anion and the other to the closed THF ring. At n=6, the spectra change shape abruptly, which become more characteristic of THF n − clu...

متن کامل

Relativistic many-body calculations of excitation energies and oscillator strengths in Ni-like ions

Excitation energies for 3l-4l8 particle-hole states of Ni-like ions are determined to second order in relativistic many body perturbation theory. The calculations start from a closed-shell Dirac-Fock potential, and include second-order Coulomb and Breit-Coulomb interactions. Retarded electric-dipole matrix elements ~in length and velocity forms! are calculated in second order for transitions fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2006